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National University, Canberra, ACT 2600, Australia 

Received 1 April 1983 

Abstract. We present some new results concerning regular and irregular motions in 
classical systems. The origin and motivation for the work is to be found in fibre optics. 
We show that the equations describing ray paths in axially uniform optical fibres are 
mathematically equivalent to the classical mechanics of a particle moving in a two- 
dimensional potential U. The classification of rays in non-circular cross-section fibres is 
related to questions of integrability and the existence of regular motion in mechanical 
systems. The elliptic fibre leads to potentials U ( w )  where w2=xZ+A2yZ where A is a 
constant. It is conjectured that such potentials give rise to regular motion as revealed by 
a study of phase space trajectories, but the second invariant is unknown. The special case 
U = w 4  is studied in detail. These potentials belong to the wider class in which U is a 
homogeneous function of x and y, but not all potentials in that class give rise to regular 
motions. 

1. Introduction 

There is currently great interest in systems which are simply defined in classical 
mechanics but which exhibit complex and unexpected behaviour. A typical example 
is a particle moving in a plane under the influence of a potential; contrary to what 
the standard mechanics texts might lull us into believing, the equations are in general 
non-integrable and the motion of the particle in phase space often appears to be 
stochastic rather than following regular periodic orbits. (See the reviews by Berry 
(1978), Helleman (1980) and Whiteman (1977) for examples.) In this paper we 
introduce a new class of two-dimensional potentials which pose some interesting 
questions concerning the generation of chaotic motions. 

This work is motivated by studies in fibre optics, as we explain in § 2. We shall 
demonstrate that, mathematically, the ray equations for light propagation along optical 
fibres are exactly equivalent to the two-dimensional mechanical problem. The distance 
z along the fibre plays the part of time, while the refractive index profile relates to 
the potential. The class of rays known as tunnelling leaky rays describe light which 
is not totally guided by the fibre, but which attenuates due to a radiation mechanism 
(Snyder and Mitchell 1974, Adams er a1 1975, Stewart 1975). The existence of 
tunnelling rays depends on the fibre cross-sectional shape and is related to the question 
of integrable equations of motion and constants of motion in the analogous mechanical 
system. Tunnelling rays can affect the information carrying capacity of an optical 
fibre and are important when interpreting measurements (Ankiewicz and Pask 1978, 
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Adams et a f  1976). It is the difficulty in the latter work when non-circular cross-section 
fibres are involved (Petermann 1977, Ramskov Hansen et a1 1980, Barrel1 and Pask 
1980) which leads us to apply techniques developed in classical mechanics. 

The deviations from circularity immediately suggest the first-order distortion giving 
elliptical refractive index contours or equipotential curves. Thus we are led to 
mechanical problems with potentials of the form 

U = U ( x 2 + A 2 y 2 )  ( 1 . 1 )  
where x and y are Cartesian coordinates in the plane and A is a constant equal to 
the ratio of the ellipses’ semi-major to semi-minor axes. 

The optimised optical fibre refractive index profile used in practical designs (Gloge 
and Marcatili 1973) has a power law behaviour and this leads to the specific potential 
form 

U = ( X ” A ’ ~ ~ ) ‘ ’ ~  (1.2)  
where q is a constant. The advantage of these potentials is that we have mechanical 
similarity (see Landau and Lifshitz 1969, 9: 10) so that the behaviour of the orbits 
pertaining to one energy is also that for any other energy if a scaling transformation 
is applied. This contrasts with the classic HCnon and Heiles (1964)  example which 
reveals strong energy-dependent characteristics. 

In 8 3 we give evidence to support our conjecture that potentials of the form in 
equation (1 .2 )  lead to regular motions which indicate the existence of an integral of 
motion in addition to the energy. These results pose two further questions which we 
consider in 89: 4 and 5 .  The principle of mechanical similarity only requires U to be 
a homogeneous function of x and y, i.e. there is a q such that for any a 

(1 .3 )  

and it  might be suspected that all homogeneous functions lead to orderly motions. 
On the other hand, the simple and symmetric form of the elliptical equipotential 
contours described by ( 1 . 1 )  leads us to ask whether all potentials of this form are 
integrable, with (1 .2 )  just providing a special case. 

The discussion forming 9: 6 should convey to the reader several challenges since 
one of our aims is to ask questions rather than just present a series of cut and dried 
results. 

U(ax,  ay = a‘U(x, Y 1, 

2. Optical and mechanical analogues 

2.1. Basic formalism 

An optical fibre is a cylindrical dielectric structure which we take to be uniform axially 
and aligned with the z axis. The refractive index n ( x ,  y )  is greatest in the core region, 
which is surrounded by a cladding, usually assumed to be uniform. Following conven- 
tion, we set 

n2(x,y)=n?11-2A.g(x,  y)1  (2 .1 )  
where no is the maximum refractive index within the core and A is related to the 
cladding refractive index ncl  by 

(2 .2)  
2 ncl = n i ( l - 2 A ) .  
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The grading function g describes the variation of refractive index and 

O C g ( x , y ) < l  in the core, 

g(xt Y 1 = 1 in the cladding. 

In practice the manufacturer aims to produce a circular cross-section fibre with a 
power law profile so that 

g(x, y )  = (x2+y2)4’2 = r4, (2.4) 
where we take r = 1 as the core boundary and q is a parameter chosen to optimise 
the fibre information carrying capacity (Gloge and Marcatili 1973, Olshansky and 
Keck 1976, Ankiewicz and Pask 1977). Note that throughout this paper all lengths 
are scaled and dimensionless, giving g(x, y )  = 1 on the boundary. 

We now follow the ray theory given by Ankiewicz and Pask (1977). The ray paths 
are given by Born and Wolf (1970, § 3.2) 

(d/ds)(n dR/ds) = Vn (2.5) 
where R is the position vector for a point on the ray path and s is measured along 
the ray path, as shown in figure 1. For an axially uniform fibre, n is independent of 
z ,  and (2.5) gives 

(2.6) 
- 

n dz/ds = n cos 8 = constant = p. 

Figure 1. Ray path. A point on the path is R = (x, y, z )  and s is the distance along the 
path. By geometry dz/ds = cos 8 and (ds)2 = (dz)’ + (du)’ = (dx)’ + (dx)’+ (dy)*. 

If we substitute (2.1) into (2.5) and use (2.6) to convert to z derivatives we obtain 

(B2/nih)d2r/dz2 = -Vg(x, y ) .  (2.7) 
We now set 

t = noz A’”/B 

and then (2.7) becomes 

d2r/dt2= -Vg(x, y )  (2.9) 
where r = ( x ,  y) .  This is readily recognised as mathematically equivalent to Newton’s 
equation of motion for a particle of unit mass moving in a potential U identical with 
the refractive index grading function: 

U = g(x, y ) .  (2.10) 
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The geometry of the path shown in figure 1 gives 

(ds)’ = (dz)’ + (dx)’+ (dy )’ (2.11) 

which together with (2.6) leads to 

n Z / p 2  = (dx/dz)’ + (dy/dz)’ + 1,  (2.12) 

or, in terms of the (2.1) definition, 

i(p2/niA)[(dx/dz)2 + ( d y / d ~ ) ~ ] + g ( x ,  y )  = ( n i - p 2 ) / 2 A n ; .  (2.13) 

We define the constant E by 

E = ( n i - p 2 ) / 2 A n ; =  ( n ; - & 2 ) / ( n i - n 2 1 ) ,  (2.14) 

since in the mechanical analogy equation (2.13) is just the conservation of energy 
equation. We introduce the momentum 

px = dx/dt = ( P l / n o h )  dxldz (2.15) 

and define py similarly. In ray optics px and py are related to angles made by the ray 
path. Equation (2.13) becomes 

(2.16) 

We thus see that ray theory in fibre optics is exactly equivalent to two-dimensional 
classical mechanics. The projection of ray paths onto the fibre cross section (see 
Ankiewicz and Pask 1977, figure 4 for example) gives a curve x(z) ,  y(z)  which is just 
that traced out by a particle with unit mass moving in a plane under the action of the 
potential U and with energy E specified by (2.14). 

i(px’ + p : )  + g(x, Y 1 = 3 p z  + p :  1 + U(x, y ) = E. 

2.2. R a y  classification 

Rays can be partially specified by the path constant 8, which by definition (equation 
(2.6)) satisfies s no. The first class of rays have 8 > ncl and hence E < 1 .  Equation 
(2.13) then requires that all points x, y on the ray path must give g(x, y )  < 1 so that 
these points are all in the fibre core according to (2.3). The rays with ncl </? s no are 
thus totally confined to the core and are called bound or trapped rays. 

The rays with b < n c l  and E >  1 can always satisfy (2.13) with the straight line 
paths which occur in  a uniform cladding. Rays launched in the core with 8 < nCl may 
reach the core-cladding boundary and hence join smoothly to a cladding path; these 
rays are not trapped in the fibre core but leave it by the refraction mechanism-see 
figure 2. However, some rays launched in the core may follow paths which do not 
reach the core-cladding boundary and thus there is no geometric link, consistent with 
the ray-specifying parameters such as 8, to the ray paths in the cladding. This is 
analogous to a particle confined by a potential barrrier; classically the particle is 
trapped in that region but quantum mechanically it may tunnel through the barrier 
to follow one of the free space paths. Wave optics provides a similar result and ray 
paths confined to the core, but having 6 < nCl, do not represent trapped power since 
they are connected to the external or cladding paths by an evanescent field. Each 
time the path goes through an outer turning point there is a portion of the power 
which leaks or tunnels into the cladding. This class of rays is called ‘tunnelling’ and 
is associated with power which is partially trapped within the fibre core but gradually 
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> 
0 z 

Figure 2. Schematic drawings of rays in a circular cross-section graded index fibre: ( a )  
trapped, (6) refracting, ( c )  tunnelling ray. The broken circle marks the outer caustic and 
the broken line represents an evanescent field interaction connecting paths in the core 
and the cladding. The fibre has core radius p .  

radiates away (Snyder and Mitchell 1974, Adams et a1 1975, Stewart 1975, Ankiewicz 
and Pask 1978). See figure 2. 

To complete the classification we need to know which initial conditions xo, yo, 
(dx/dz)o, (dy/dz)o, consistent with a given 6 < nCl,  lead to a path confined to the core 
when the initial point xo, y o  is in the core. It may be possible to do this if a second 
path constant is available, as we now demonstrate for circular cross-section fibres. 

2.3. Circular cross-section fibres 

In this case g depends only on the radial coordinates r, and consideration of azimuthal 
variations in (2.5) leads to the second ray path constant (Ankiewicz and Pask 1977) 

(2.17) 

where 4 is the angle between the ray path projection onto the x ,  y plane and the 
azimuthal direction. Thus i indicates the conservation of angular momentum, xp, - 
yex. We find it convenient to use a normalised second invariant (Hartog et a1 1982) 
A = i2/(2An;). Ray paths are now completely labelled by and i (or E and A), and 
the class of tunnelling rays can be specified. For example, for the power law fibres 
(see equation (2.4)) Ankiewicz and Pask (1977) show that tunnelling rays have 

1 s  E s m i n ( 1  +q/2,1/2A), (2.18) 

E - 1 s A S  i q [ 2 E / ( q  + 2)]11-2/q. (2.19) 

The initial conditions are used to find E and A and the ray type is then immediately 
known: if E -= 1,  the ray is trapped; if E > 1 and A satisfies (2.19) the ray is tunnelling; 
if E > 1 and (2.19) is not satisfied, the ray is refracting. 

i = r [ n 2 ( r ) - p  -2 ] 1/2  cos4  

2.4. Remaining problems and mechanical questions 

For non-circular cross-section fibres, i is no longer a constant and in general the ray 
equation does not readily reveal a second constant. It is obvious that corresponds 
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to angular momentum in the analogous mechanical system established in $2.1.  We 
can now also appreciate the link between the problem of finding which rays show a 
tunnelling behaviour and the search for integrable equations and constants of motion 
in mechanical problems with non-central forces. 

The first-order distortion of cross section might be expected to lead to elliptical 
shapes rather than circles so that (2.4) is replaced by 

(2.20) 2 2 412 g ( x , y ) = ( x 2 + A  Y ) 

where A # 1 implies elliptical iso-indicia1 contours. The identification of g with 
potential U in (2.10) then leads to potentials ( l . l ) ,  (1.2) and (1.3), as discussed in the 
introduction. 

Thus the rest of this paper is concerned with the motion of a particle in some very 
simple but important two-dimensional potentials and the search for regular motion 
and integration constants. The motivation has been spelled out in this section and 
the reader may reinterpret all mechanical results in terms of ray paths in an optical fibre. 

3. Motion in elliptical power-law potentials 

3.1. General formalism 

We consider a particle moving in a plane so that the Hamiltonian H is 

H = 3P: + p ; ,  + U(& Y ) *  (3.1) 

For a conservative system H = E  provides a first integral and the problem is reduced 
to quadratures if a second integral p exists, 

f ( x ,  y ,  p x ,  p , )  = constant = p. (3.2) 

Knowledge of E and p provides bounds on the parts of phase space available to a 
particle and, in particular, the regions of configuration space x ,  y which may be 
reached; this is the information required in the ray classification problem discussed 
in Q 2. 

The search for p may be carried out mathematically or numerically. The mathe- 
matical approach usually relies on the exploitation of some symmetry or choice of 
variables leading to a separable problem-we give examples in 09 3.2, 3.3 and 4.2 
and return to the point again in the discussion. 

In the numerical approach, initial conditions are chosen and x ( t ) ,  y ( t ) ,  p x ( t )  and 
p y  ( t )  are computed using a series of steps in time. The relation H = E  means that 
only three of the four phase space variables are independent, e.g. x ,  y ,  p x .  If the 
motion is irregular the volume available in x ,  y ,  p x  space will be filled with quasi-random 
motions and any plane cut through this volume will show a scattering of irregular 
points as the particle phase space trajectory cuts through it. However, if the second 
integral exists, a plane, such as the x ,  p x  plane for y = 0, will reveal a smooth curve 
filled in by the points generated each time the trajectory passes y = 0. This method 
is beautifully introduced by HCnon and Heiles (1964) and in the textbook by Park 
(1979), and is discussed extensively by Berry (1978) and Helleman (1980). This 
approach is applied in 0 0  3.4, 4.1 and 5. 

We now consider details for power law elliptical potentials as in equation (1.2). 
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3.2. Special case: parabolic potential profile 

In this case q = 2 and the Hamiltonian (3.1) separates: 

(3.3) 

(3.4) 

H = ’  2 p x  2 +.x2+$p; +A2y2 

= Hlh, P x )  + H2( Y ,  P y  

and the x and y motions are independent, except that their energies satisfy E2 = E  -E l .  
This gives the two integrals of motion E and E l .  In the fibre optics context, this case 
is discussed by Ankiewicz (1979a) and Barrel1 and Pask (1979). Whenever the grading 
function g ( x ,  y )  (equation (2.1)),  and hence the equivalent potential U(x, y ) ,  separates 
into a function of x plus a function of y the second invariant allows us to prove that 
no pure tunnelling rays can exist since eventually any non-bound ray reaches the 
core-cladding boundary and escapes by refraction. 

3.3. Special case: the step profile with elliptical boundary 

This case corresponds to taking q + 03 in (1 .2)  and we have a uniform elliptically 
shaped region with boundaries which reflect particles or rays. Within this region the 
particle or ray paths are straight lines and the standard process with equal angles of 
incidence and reflection occurs at the boundary. For this case the second invariant 
p does exist: 

CL = b p ,  -YPx)2-P:( l -A-2L (3.5) 
as we prove in the appendix, where we show that p is in fact the product of the 
angular momenta taken about the two focal points of the elliptical boundary. Berry 
(1981) has given this invariant in terms of angles and distance around the elliptical 
boundary. Clearly, as the potential contours become circular, A + 1 and p reduces 
to the conventional angular momentum squared. 

The possible paths consistent with a given E ( = [ p :  + p : ] / 2  in this case) must have 
p satisfying 

(3.6) 
and the regions of x ,  y space available to such paths can also be classified, leading to 
the caustics in the optical problem. There are two types of ray congruences: the paths 
with positive p generate an inner caustic which is an ellipse confocal with the boundary; 
the paths with p < 0 have no inner caustic but lie in a region bounded by a hyperbola 
and the interface. Pure tunnelling rays are found only in the p > 0 class. For further 
details of the fibre optics applications, see Ankiewicz (1979a) and Love et a1 (1979). 

We can use the angle relations given in the latter paper to indicate the various 
types of rays in terms of their invariants. One difference from the circular case is that 
there is a new class of ‘slowly refracting’ or ‘tunnelling/refracting’ rays-these tunnel 
for a while, but at some point along the fibre they refract. They are in the range 

- 2E ( 1  - A-2)  < p < 2E/A2 

2(EA-2- 1) < p  < 2A-2(E - l ) ,  E>1.  

Refracting rays have 

p < 2(EA-2 - 1) 

whilst the ‘pure’ tunnelling ones have 

2A-’(E - 1 )  </L < 2EA-*. 
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The maximum possible value of E is 1/2A. By comparing the 4 +CO limit of (2.19) 
with the A + 1 limit here, we see that p is identified with 211. 

We now turn to the phase space trajectories and in particular those curves in the 
x ,  p x  plane which correspond to a given E and y = 0. In the present case the numerical 
approach outlined in 8 3.1 is unnecessary since equation (3.5) with y = 0 and p’y = 
2E -pf  gives 

(x2-1+A-’)(2E - p f ) = p .  (3.7) 
Contours for constant p are plotted in figure 3. The contour for p = 0 corresponds 
to the vertical lines 

x =x,(CO) = * F  (3.8) 

where F’ = 1 -A-’ and the focal points of the ellipse forming the boundary are at 
(*F, 0). Obviously if a path goes through either focus it has zero angular momentum 
about that point and I-L is zero since it is the product of the angular momenta taken 
about the two foci. 

- 
-1.0 -0.8 -0.6 - I -0.2 0 0.2 0.L 0.6 0.8 1.0 

X 

Figure 3. The x-p, phase diagram for y = 0 in a step profile potential with elliptical 
boundary. A curve can be labelled by itsF value and intersects the x axis at (F2 +c(/2E)’”; 
if p CO it intersects the p .  axis at ( ~ E + F / F ~ ) ” ~ ,  Here A = 1.1 and E = 1. 

3.4. Numerical studies 

For the general elliptical power law potential as in (1.2), with 4 f 2 or CO, we must 
resort to the numerical approach outlined in 8 3.1.  For a specified E, we use a computer 
program to trace out the particle trajectory, or ray path, numerically and store values 
of x and p x  each time the trajectory crosses the y = 0 plane. By superimposing results 
for various initial conditions we can build up a portrait covering the x ,  p x  plane for a 
given E and find how much of the plane is covered by smooth curves (cross sections 
of tori). The coupled differential equations to be solved numerically are 

(3.9) 

d2y/dt’ = -qAy[x2 +A’y2]‘q-2)/2. (3.10) 

d2X/dt2 = - 4 ~  [x’ +A2y 2]‘q-2’/2, 
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As mentioned in the introduction, the potentials in (1.2) also satisfy equation (1.3), 
i.e. they are homogeneous functions of degree q. Therefore the principle of mechanical 
similarity holds (Landau and Lifshitz 1969, 0 10) and the paths for different energies 
differ only by scaling factors. (This fact has been exploited in fibre optics by Barrel1 
and Pask (1980) and Pask (1979).) Thus, if a given profile (A, q )  exhibits no stochastic 
behaviour for some value of E, then there will be no stochastic behaviour for all 
values of E. In general, one would expect a mixture of regular and stochastic patterns. 
To our surprise, we found no evidence of stochastic behaviour for any combination 
of A and q. For fibres we are mainly concerned with A < 1.2, but we studied examples 
with A as high as 10 and always found completely regular behaviour. The fact that 
the x ,  p, plane is covered with smooth curves gives strong evidence for the existence 
of a second invariant, p, for all these profiles. This is in contrast to the HCnon-Heiles 
potential, and the profiles to be studied in 0 4.1. It is not known at the present time 
whether this invariant can be expressed in terms of elementary functions. 

The x-p, plots take three different forms, depending on A, and whether q is low, 
close to 2, or high. These regions are defined by 

region 1: q >qd(A), 

region 2: q[ (A)<q <qd(A), 

region 3: q <q,(A), 

(3.11) 

(3.12) 

(3.13) 

and examples of all three are given in figure 4. Since scaling applies, we have used 
E = 1 in all these plots. Each curve would represent a different value of a second 
invariant p.  

There are two values of x which are of particular interest when interpreting the 
phase space plots in figure 4: the fixed points xF which represent the cases where the 
x-p, curves have shrunk to a single point, and the transition points x ,  which divide 
the x axis into regions crossed by curves of different types. These values depend on 
the potential parameters A and q (equation (1.2)). 

When q = 03, xF = 1 ; as q decreases, so does xF, reaching a minimum at q = qm, 
and then increasing again and meeting the interface (xF = 1) at q = qd(A). An example 
of this region 1 behaviour is shown in figure 4(a). When q is in region 2 (equation 
(3.12)), which we show below means q near 2, patterns such as those in figure 4(6) 
occur and there are no fixed points, apart from (0,O). Thus all orbits come arbitrarily 
close to ( x ,  y )  = (0,O) and so no inner caustics exist. As q decreases below ql(A), a 
new pattern emerges, with xF increasing (from 0) with decreasing q ; the ‘figure of 
eight’ loop crosses the x axis at x , ( q ) .  An example of this region 3 behaviour is given 
in figure 4(c). Table 1 gives some of the values of ql, q d  and qm, ascertained numerically, 
for various values of A. In fibre optics we are generally concerned with ellipticities 
of not more than 10 or 20% (i.e. A<1.2) ,  and it will be observed that for these 
values we have the approximations 

(3.14) 

(3.15) 

If we had chosen to investigate the curves in the y,  py plane obtained when x = 0 
we would obtain YF and y,. The results for XF, x, ,  yF and yv  are plotted in figures 5 
and 6. These results are for E = 1, but the scaling property for these potentials 
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0 
X 

1.0 

I . . _ . -  .. . r. 
0.21 IC' 

4 : 1 
5 1 

I 1 
Figure 4. The x-p,  phase diagram for y = 0 and 
elliptical power law potentials as in (1.2). The para- 
meters are A = 1.1 and q = 3 in (a ) ,  q = 2.05 in (61, 
and q = 1.75 in (c), giving examples for all three 
regions defined by (3.11)-(3.13). The fixed points 
are marked xF, and xv indicates the changeover 
points for different types of curves. In (c) the figure- 
of-eight curve cuts the x axis at x,. We take E = 1 
as explained in the text. Each symbol refers to a 

i .I 1 different phase space trajectory. It is clear that 

- .  . .  , - .  
. * e  D D  , %. 

* .  .. , ' *  , .*/ 

' ' ' . .  . . .  

.I. .1 . . . . . -  i smooth curves could be drawn through the numeri- L I  

-0.2L 
-0.4 0 0.4 cally generated points. 

X 

Table 1. Critical exponents q for various A. 

1.02 1.96 2.04 3 
1.05 1.905 2.105 4 
1.1 1.825 2.21 4.5 
1.15 1.75 2.32 5.5 
1.2 1.685 2.435 6 

(Landau and Lifshitz 1969, $ 10) means that 

and similarly for x, ,  yF and y,. 
We note here that the completely regular behaviour generated by these potentials 

is quite atypical amongst the total class of mechanical systems, and non-integrability 
appears to be the rule (Helleman 1980). For this reason we investigate the properties 
of potentials as in equation (1.2) which may be responsible for this special feature. 
The existence of a second invariant indicates some 'hidden symmetry' (Moser 1980), 
but there is no standard way to find it. 
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I \ \ \  \ 2.4 

Figure 5. ( a )  Location of xF (q <2)  (using the y = 0 slice giving the x-p, plane). The 
intercepts on the q axis give ql(A). ( b )  Position of YF (using the x = 0 phase space slice 
to give the y-py plane) for q > 2. The intercepts on the q axis give qd(A). ( c )  xF for q > 2. 
At the intersection of the curves with the line xF = 1 we have q = qd(A); the same values 
of qd(A) are obtained from ( b ) .  As A increases, so does qm,  the position of minimum 
x F ;  as q +cc we have xF+ 1 for all curves. 

A 

9 

Figure 6. Lines of constant x ,  and yv.  The x ,  = 0 line is A = 2 / q ,  and the yv  = 0 line is 
A = 2q. For q > 2 and below the y v =  0 line a very good approximation is y.,= 
1-2.16(A-1)/(9-2).  

3.5. Optical consequences 

If a single mode is launched into a multimode fibre, then the intensity pattern observed 
at the end depicts the mode field, or equivalently the ray congruence formed from 
the ray path projection on the cross section. Consider a curve for a given value of p 
on any of the diagrams in figures 3 and 4. We can deduce two types of behaviour. 
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The first type corresponds to x-p, curves which are single closed loops and these 
are found in the central regions of figures 3 and 4 ( a ) ,  in figure 4 ( b ) ,  and in the outer 
regions of figure 4 ( c ) .  Each time y = 0, (x, p , )  is somewhere on such a loop. This 
means that all values of 1x1 from 0 to some maximum occur, and that the (x, y )  ray 
congruence cannot have an inner caustic; the light intensity near the fibre centre is 
thus high for these ( @ , p )  modes. These ‘hyperbolic’ modes cannot be tunnelling; 
their actual shapes are given by Ankiewicz (1979a). Note that figure 4(6) corresponds 
to region 2 q-values (equation (3.12)) which means near-parabolic (q = 2) fibres, 
according to the bounds in table 1. Thus, in fibres with elliptical contours which are 
sufficiently close to the parabolic profile all modes are of ‘hyperbolic’ type. 

The second type of behaviour relates to the part of figure 4 ( c )  within the ‘figure 
of eight’, the Ix I > F  part of figure 3 and the large 1x1 part of figure 4 ( a ) .  Each constant 
p curve now consists of two disjoint parts. Each time y = 0, lx I is between two values 
which can be read off the x axis, and it is never close to zero. Thus an inner caustic 
exists and the intensity pattern will be qualitatively different from those of the modes 
discussed above. In particular, the intensity near the centre will be very low. These 
‘elliptic’ modes can be bound or tunnelling; for fixed eccentricity the proportion of 
‘elliptic’ modes will increase as 1q - 21 increases (Ankiewicz 1979b)-see figure 6 .  

When CL reaches its limiting value for the ‘elliptic’ congruences, the two separate 
loops in the (x, p , )  plane shrink to points, located at ( f x F ,  0)-see figures 4 ( a )  and 
( c ) .  If the ray’s initial condition is X O = X F ,  ( P , ) ~ = O ,  then x = *xF each time y =0 ,  
and the congruence reduces to a single closed curve in the (x, y )  plane. Thus, in the 
phase plots, each fixed point corresponds to a closed periodic orbit in the fibre cross 
section-this means that the inner and outer caustics coalesce. 

There has been considerable theoretical and experimental work reported for 
elliptical fibres, and apart from those already cited we mention Ankiewicz et a f  (1979), 
Yevick and Stolz (1980), Checcacci et a1 (1980), Brenci et a1 (1981) and Saijonmaa 
et a1 (1982). 

4. Homogeneous function potential 

4.1. General question 

The results presented in 9: 3 may induce one to surmise that all homogeneous potentials 
lead to regular behaviour. This is not the case, as we now show with a counterexample. 
We consider 

U = ( x ~ + A ~ ~ ~ ) ~ ’ ~ .  (4.1) 

This class satisfies scaling property (1.3), so we may again take E = 1 without loss of 
generality. The topology of the orbits is now quite complicated, and it features both 
regular and stochastic behaviour. An example is given in figure 7. All the points 
marked by triangles are generated by a single trajectory. 

4.2. Special cases 

While potential (4.1) provides a counterexample to the general proposition, it does 
not mean that the elliptic power-law potentials (1.2) are the only homogeneous function 
potentials leading to regular behaviour. We next offer two other examples. 
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Figure 7. x-p, plot for y = 0 and E = 1 and potential of form (4.1). Here A = 1.1 and 
q = 1.9. Each symbol refers to a different phase-space trajectory. It is clear that part of 
the area is covered by a stochastic region. 

Whenever U(x,  y )  is a separable function of x and y, the Hamiltonian separates 
as in (3.41, and a second invariant exists, since the x and y motions have their own 
conserved energies. This will lead to a regular phase space curve. Therefore, for any 
constants C1 and C2, 

U(x ,  y )  = clxq + c 2 y q  (4.2) 

is a homogeneous function of degree q which leads to regular mechanical behaviour. 
Potentials which are separable in other coordinate systems also lead to a second 

invariant, and as a second example we consider parabolic cylindrical coordinates. In 
this case we obtain a separable problem when (Landau and Lifshitz 1969, 9: 48) 

where r 2 = x 2 + y 2 .  If we now take 

g ( u )  = c l u q + l ,  h ( u )  = c 2 u q + l ,  (4.4) 

we again obtain a potential which is homogeneous of degree 4 and generates regular 
mechanical behaviour. In terms of polar coordinates r, 8 we can write (4.3) as 

U = [ r / p  (4.5) 

where p is the radius depending on angle according to 

p ( e )  = cl(i +COS + c 2 ( 1  -COS (4.6) 

There is one major difference between these examples and the potentials (1.2): 
the latter potentials have elliptical potential contours for any value of q, but the 
potentials in (4.2) and (4.5) have contours which vary as q varies. This underlines 
the point that these examples have special mathematical forms which lead to integrable 
equations of motion. 
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5. Potentials with elliptical contours 

It seems that the concentric ellipse form of potential contours may provide the clue 
to the regular behaviour and integrability reported in 3: 3 .  To investigate this further 
we consider potentials of the type 

U = U ( W )  ( 5 . 1 )  

where 
2 2 1 / 2  w = ( x 2 + A  y ) ( 5 . 2 )  

Obviously scaling does not apply for these potentials. There is an unlimited number 
of forms for U ( w ) ,  so a mathematical proof would be required to make a general 
statement concerning regular trajectories for all energies in this class of profiles. 
Lacking such a proof we report some numerical results. 

Take 

U = (2A)-’ tanh’(d2hw). (5.3) 

Using ( 2 . 1 )  and ( 2 . 1 0 ) ,  we see that this corresponds to a fibre with a refractive index 
which is of considerable interest in fibre optics: 

n 2  = n :  sech’(J26w). (5.4) 

From numerical results, the behaviour seems completely regular, and virtually the 
same as that for a parabolic fibre with concentric ellipse index contours. 

We also examined cases with a fourth-order term ( w 4 ) .  We set U(1) = 1 and so take 

U ( w ) =  w z ( l + c w 2 ) / ( l + c )  ( 5 . 5 )  

where C is a constant. Our computer studies again indicate regular behaviour and 
indeed, given C and A ,  one can find a power-law ellipse exponent q which gives a 
similar phase plot. We did not observe any onset of stochasticity. For C negative, 
the x-p, plots resemble the figure 4 plots for q low (< 2 ) ,  while those for C positive 
(e.g. C = + 1 )  are like those for high values of q. 

These numerical results should be taken as suggestive, and perhaps the best we 
can say is that we have not come across a counterexample to our conjecture that 
potentials of the form ( 5 . 1 )  lead to regular mechanical behaviour. 

6. Discussion 

The approach of topological dynamics has been used to explain phenomena in various 
branches of physics, such as plasmas, galactic motion and the beam-beam interaction; 
we believe this is the first application of such concepts to explain propagation of light 
in optical fibres. We have related results to ray caustics, observed intensity patterns 
and critical values of exponents in multimode fibre investigations. 

The application of methods of topological dynamics to potentials which are 
homogeneous functions of x and y has the advantage that only one energy value need 
be considered, since scaling and mechanical similarity preclude the onset of irregular 
behaviour at some particular energy. While not all such functions give rise to regular 
behaviour, it does appear that the power law potentials, equation ( 1 . 2 ) ,  represent 
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a new, large class of integrable systems. This is of importance in fibre optics, because 
it implies the existence of tunnelling rays in many non-circular fibres, but it is also 
interesting theoretically since integrable systems are known to be rare in the totality 
of all Hamiltonians (Helleman 1980). 

It is also interesting to note that Richstone (1982) explored galactic motion using 
a potential with pronounced scaling properties and found that the phase space 
behaviour is always regular, in contrast to the variety of irregularities found by Henon 
and Heiles (1964) in their classic study of that astrophysical subject. 

The second invariant is most easily found for systems which can be made separable 
with a suitable choice of coordinates (Landau and Lifshitz 1969, 9: 48), but this method 
does not apply in the present case. A second approach is to pick a form for the 
invariant and then work backwards to the possible potential (Holt 1982, Whittaker 
1927), but again this has not proved possible in our case. There does not appear to 
be a general method for detecting regular systems, and those Hamiltonians which 
have been integrated (e.g. the Toda lattice) seem to depend on mathematical quirks 
peculiar to them. It has been conjectured that integrability is related to the 'Painlevt 
condition' involving singularities of differential equations in the complex plane. The 
exploitation of this seems promising (Chang et a1 1981, Bountis and Segur 1982), but 
the idea has yet to be put on a sound footing. 

The Kolmogorov-Arnold-Moser (KAM) theorem (Berry 1978, Helleman 1980, 
Whiteman 1977) shows that when an integrable system is perturbed slightly, many 
of the phase space invariant tori still remain. In our case, this means that when A in 
equation (1.2) differs only slightly from unity, i.e. when we are very close to a central 
force system, then we expect mostly regular behaviour. This also suggests that we 
try in every case to find a known integrable system near to the present one and this 
approach was used by Ankiewicz (1979b). He used elliptical coordinates and found 
a separable potential (Landau and Lifshitz 1969, 9: 40) which approximated the 
potential in (1.2). The invariant generated by the approximation potential is not an 
exact invariant for the cases studied in this paper, but in some parameter regions it 
remains reasonably constant. 

Appendix 

Part of the path of a particle moving in a uniform potential region with a perfectly 
reflecting elliptical boundary is shown in figure 8. At a reflection the momentum p 
is changed in direction but not in magnitude, and between reflections the paths are 
straight lines. Consider 11, the angular momentum taken about focal point 1 before 
the reflection: 

Il = Irl xpI  = rlp sin 8 = Rlp  (All  

where R1 is the perpendicular from focal point 1 onto the path, rl = lrll and p = / p / .  
Similarly for angular momenta about focal point 2 and for the path after reflection 
(referred to by primed quantities): 
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Figure 8. A reflection at a perfectly reflecting elliptical boundary. The focal points are 
F, and F2 and R I ,  R;, R2, R; are normals from the paths to the focal points. The 
momenta p and p ’  are directed along the paths. 

By reflection law, p = p ’ ,  and a theorem in Euclidean geometry (Salmon 1855) asserts 
that 

R1R2= RIR;.  (A5) 

These two facts, together with equations (Al)-(A4), imply that 

Since both II  and 1 2 ,  and hence I l l 2 ,  are constant for straight line paths and the product 
is unchanged by a reflection we conclude that 

is an invariant. The boundary is x 2 + A 2 y 2  = 1 so that the focal points are (*F,  0) 
with F = (1  -A-2)1’2,  Since r l  = ( x  +F, y )  and r2 = ( x  - F, y )  we find 

which we substitute into (A7) to get 

p = (xpy - Y P X ) *  -A-* )  
= I 2 - p ; ( l  - A -  2 ). 

In ( A l l )  I is the angular momentum referred to the origin. 
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